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Effect of trap clustering on Brownian particle trapping rate
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Brownian particle survival is studied in the case where traps are gathered in clusters. If the number of traps
nin a cluster is small, the trap clustering is only manifested at the final stage of the process. In the opposite
limit, the clusters are perfectly absorbing and trapping proceeds considerably slower than that by noncorrelated
traps from the very beginning. We treat the intermediate case, whisraeither small nor large, and present
an approximate expression for the rate constant that connects the two limiting cases. The results are in
agreement with computer simulatio§1063-651X98)09810-9

PACS numbd(s): 05.40:+j, 82.20.Fd

The idea of Brownian particles trapped by randomly dis-yectors V(lk) ,...,yﬂ‘)) determines the positions afspherical
tributed static perfect traps is widely used in theoretical mOdtraps with respect to the center kth cluster. Trap clusters
els of different physical and chemical phenomena, exempliare assumed spatially noncorrelated and statistically similar.
fied by fluorescence quenching, fast chemical reactionsthis implies that the cluster centers are distributed according
migration of excitations, et¢1,2]. An essential point under- to the Poisson law and the distribution of traps within each
lying the conventional theorfdating back to Smoluchowski  cluster is the same. The trap concentratioand the cluster
is the assumption that traps are spatially noncorreldtgdn concentratiorc,, are related by the equatiar=nc,,.
real systems, however, trap correlations are often present ei- As a beginning, consider a particle moving along a
ther by design or naturally. Several attempts to allow for trapyiener trajectoryW, in the presence of a single cluster of
correlations were madg—8]. Particular emphasis has been traps located at given poin{x+y;, i=1,...n}. To charac-
placed on the trapping kinetics at the_ final process staggyrize the particle’s survival, introducd(t|W,|x|{y;}),
where closed analytical results are availaf@g]. which equals 1 if the particle survives for a tirhand 0 if it

Our aim in this paper is to handle the correlation effects ais trapped. The condition of survival is formulated especially
times where the majority of particles annihilate. We focus onsimply if one looks on the process from the “particle’s point
a specific type of trap correlations, viz., traps are gathered igf view.” Then the particle is stationary at the pointwhile
clusters Trap clustering can play an important role in deter-tne cluster centefinitially at the origin moves alongw, .
mining the rates of trapping by segments of polymer chaifrne jth trap of the cluster describes a tubg(W,—y;) of
[9] or ligand binding to cell-bound receptos0]. A model  radiush, whose centerline is the trajectow, shifted at the
of trapping by spatially noncorrglated clusters of traps hagector —y; with respect toW,, wherei=1,...n. Note that
been proposed by Berezhkovskii al. [6] and discussed in wy(W,) is known in the literaturg11,12 as theWiener sau-

subsequent articldg,8]. The previous treatments have pro- sage (WS). Due to the cluster motion, the traps visit the

vided a few general conclusions concerning the trap CI“Sterr'egionwﬁ,“)(Wt :{y;}), which is the union o identical cop-
ing influence on particle’s survival, however, the trapping. e

i (n) [y, ichi
kinetics at norma(not asymptotically longtimes was found Ia?sngzl}/r\{a?w!ér:/gtrzli\z/\;?icmll(;ffeV\;Stotzbtrf:Vtciii}}gr, \év;slgh ::S the
only for two limiting cases. If the number of trapsin a 9 '

cluster is large enough, the clusters by themselves play th unch of W|ene_r sausagéB,S], or 5|mply t_heW|ener bunch
ole of ‘ A B). The particle survives during timeif o{™(W,{y;})
perfect traps. For suchabsorbing clusters, the . : UL

problem is reduced to that with noncorrelated traps whosd©€S not contain the(n) pointx. This implies that
concentration and size are those of the clusters. In the opp&(LIWilXI[{yi}) = 1= x(x;wp” (Wii{yi})), where x(Riw) is
site limit, whenn is small enough, a particle passes throughthe indicator function, which equals 1 when poitbelongs
a cluster nearly safely. For suchransparent clusters, the 0 @ and O otherwise. -
trap clustering is actually manifested at asymptotically long When there are many clusters and the positions of all
times only. Here we treat thiatermediatecase, where the traps are fixed, the survival of a particle moving aldgis
clusters are neither transparent nor absorbing, and show howparacterized by
a smooth transition between the two limiting cases occurs.
'Srir;r?u;r:?olzflcal results are verified by a Brownian dynamics 1;[ P(t|Wt|Xk|{yi(k)}):1_k[ [1—X(Xk;w(bn)(Wt§{yi(k)}))]-

A special feature of the mod¢b] is that each trap is 1)
assigned to a certain cluster, so that the trap ensemble can be
presented in the forfix,+y®, i=1,...n}. The points{x,} ~ What is really needed is the particle survival probability
have the meaning of cluster “centers” and the aggregate oP(t), which is the average of the product in Eg), taken

1063-651X/98/584)/43404)/$15.00 PRE 58 4340 © 1998 The American Physical Society



PRE 58 EFFECT OF TRAP CLUSTERING ON BROWNIX. . . 4341

over trap configurations and partic{&/ienep trajectories. as a display of some specific trap attraction and hence facili-
Following the approach proposed [ih3], we start with the tate the particle’s survival, according to the general conclu-
first averaging, which is carried out in two separate stagession concerning the trap correlation influence on the trapping
First, we make the partial average over trap configurationsate [5]. The latter can be of arbitrary nature so that their
inside each cluster for the fixed positions of clusters centerspfluence on the kinetics is ambiguous. The inequalBy
which is denoted below by a bar. Then, the average over thpoints to the decisive role of the grouping correlations.
Poisson ensemble of trap centers is made. This can be con- Another appropriate estimate B{t) is obtained from Eq.
veniently done by introducing an auxiliary volun§& with (3) on the relevant assumption that the clusters are spheres of
N=c( cluster centers and passing to the lifdit> inthe  radius R. Then, from the evident inequality (W)

final result. In so doing, we obtain for tHeonditiona) sur- <vg(W,), wherevg(W,)=v[ wg(W,)] is the volume of WS
vival probability generated by a spherical Brownian particle of radRism-
mediately follows that

1 N
= [i I _ . () ~
P{Wy= lm & JQ fﬂkﬂl[l XX @p7) 10X P(t)=(exd — Cqur(Wp) 1) =Ppdt). ©)

N I~3nc(t) is the survival probability of a particle among noncor-

related traps of radiuR, whose concentration isy [cf. Eq.
(4)]. So, trapping by clusters of traps runs slower than that by
clusters playing the role of traps. At asymptotically long
ZGXF{ _CclJ’ X% 0" (Wi {yi}))dx|. (2)  times, when the majority of surviving particles spend all the
time in large trap-free regiorfd4], the inequality(6) passes
Let us define the volume of WB corresponding tointo equality and the long-time decay &f(t) in d dimen-
a given trajectorywt and a fixed intracluster Configura_ SlonS(regardleSS_ of the cluster Struct)]l@(hlblts Donsker-
tion of traps {y} as vfjn)(Wt;{yi})Ev[wE“)(Wt;{yi})] ;_/grr]a[g?an behavidrl2] controlled by the cluster concentra-
[

= lim 1—if % o (W {yi})dx
Q QX ' %b 1 Yi

O —x

=[x 0" (W,; {y;}))dx, and denote the WB volume av-
eraged over intracluster configurationsﬂ;’))(wt). Finally,

it remains to averag®(t|W,), Eq. (2), over Wiener trajec-
tories, which is denoted by angular brackets. Taking into
account the definition of the WB volume, we arrive at the
following expression for the survival probabilifg]:

—In P(t)~(c3'D)¥@+2), 7

To find P(t) at normal times, a recourse to approxima-

tions making Eq(3) analytically treatable is required. At the

initial stage, the main contribution is given by the Wiener
= et trajectories determining the averagever W,) volume of

PO=({exi ~Cavy (Wo)). ® WB, v{"(t)=(v{"(W,)). This suggests use of the mean-

In the particular case=1, the volume of WB is simply field approximation neglecting the WB volume fluctuations.
the volumev,(W,) of single WS and the representation of For noncorrelated traps, a similar approddi3] well de-
the survival probability3) is reduced to that obtained earlier scribes trapping of the bulk of particles provided usual in

[13] for noncorrelated traps the trapping problemthat the volume fraction of traps is
small. One might expect that an employment of the mean-
Podt)=(exd —cvp(Wy)]). (4)  field approximation to the problem under study offers the

greatest promise, when the volume fraction of clusters is
The formal analogy between Ed&) and(4) is noteworthy.  small,c,R%<1 (nonoverlapping clusteyswith this approxi-
The presence of the cluster concentratign in place of the  mation, the survival probability3) is given by
trap concentratior, reflects the fact that here we deal with
an “ideal gas” of clusters instead of an ideal gas of traps in P(t)=exd —cqui”(1)]. (8)
the conventional model. The volume of WS is replaced by
the volume of WB because the clusters have a certain inn%y settingn=1, the model is reduced to that of noncorre-

structure. —1) 4\

. . o lated traps, the volume’(t) is the average WS volume

The represe_ntatlofB) of the su.rV|vaI .probablllty enables vy(t), and Eq.(8) leads to the conventional trapping kinet-
us to draw an important conclusion. Since forO the vol- ics. In particular in three dimensiofss]

ume of WB is smaller than the sum of the volumesnof

individual WS forming WB, a comparison of E and =
P(t)>P, 1) (5) and the kineticg8) takes its familiar Smoluchowski form
nc' .
Thus, trapping by clusters of traps proceeds slower than that —In P(t) =knct(1+2b/{7D1), (10

by noncorrelated traps no matter what the cluster structure is

[6]. Note that the correlations featuring the model can bevhere D is the particle diffusion coefficient and,
treated as a combination of grouping correlations responsible 47bD is the rate constant describing trapping by noncor-
for the cluster formation and intracluster correlations deterfelated traps. Note that at asymptotically long times the
mining the structure of cluster. The former can be interpretednean-field approximation fails because of the crucial role of
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the WB volume fluctuations at these times and the surviva  3° w
probability (7) decays considerably slower than the mean-
field estimate(8) predicts.

By definition, the average volume of WB @“)(t)
=/ Q(t;x)dx, whereQ(t;x)=Q(t;x,{y;}) and Q(t;x,{yi}) 20/ 1
=(x(x; oM (W;;{yi}))). The latter is the fraction of the tra-
jectories starting ak, which have visited at least one af
traps located at the poinfy;} during timet at least once,
i.e., the death probability of a particle initially at poixtin 5
the presence of a single cluster centered at the origin. Thu L
the mean-field approximation reduces the problem to that ¢ -
particle survival in the presence of only one cluster of traps - T8
In the following, we treat the latter problem in three dimen-
sions, assuming tha®>b, n>1, and intracluster correla- ol . . !
tions are absent, i.e., traps, being independent of each othe 0 10 DR 2
are uniformly distributed within the cluster. ’

An approximate treatment presented here is based on the

_Slm[?Ie idea flm”ar to tnat u?ed gothle t?eotry of Ilgandd t?]md'replaced byR*] for the average volume of WBsolid lines with the
Ing 1o receptors on cell sur acgs0]. In fact, we nee € nhumbers showing the values @ with simulation datdR/b=5,

integral of the probabilityQ(t;x) taken over different par- =3 (squarey 15 (circles, 60 (star]. The dashed line is the time

ticle starting pointsx rather than the probability itself. At gependence of the average volume visited by a Brownian particle of
times, t>7m, (r1p=R?%D is the characteristic time of radiusR.

Brownian-particle passage through a clustére main con-

tribution comes fromx>R. A particle initially far from a  ¢jyster most likely is eliminated before leavifige case of
cluster does not “feel” fine details of the cluster structure.absorbing clusteyslt is natural to calle the absorption co-
For such a particle, the cluster appears to be uniform bufsiiant.

neither perfectly absorbing nor perfectly transparent. This A, approximation forr is derived on the assumption that

suggests replacement of the cluster of tr@ph‘fare WIth  the mutual influence of intracluster traps on the particle death
black holes”) by a uniform partially absorbing"gray”) = .o pe neglected. This suggests use of the Smoluchowski

sphere _Of radiuR, i_n which the particl_e can be ,abs‘?fbed at dependencél0), wherec is replaced by the intracluster trap
any point with a fixed rate. With this approximation, the concentrationc,, = 3n/4wR%. Following this way, we have

problem becomes spherically symmetric a@t;x)=1 7= 7¢m=(R/3nb) 5 and

—4m[5G(t,r;x)r?dr, where G(t,r;x) is the probability

density that the particle initially at distansewill be at dis-

tancer after timet, which satisfies the diffusion equation a=3nb/R. 13
with a sink term

(1)/4nR’

36

_(n)
3
¢

v

FIG. 1. Comparison of the analytical solutipiq. (9) with b

The approximation made is good if traps are far apart
enough, i.e., the volume fraction of traps in clustess,
~n(b/R)3, is small. Even ifp;, is not small, this also seems
to be reasonable. The point is that p;, and the volume
the initial conditionG(0,r;x)=(47x%)~18(r —x), and the UE,”) as a function ofa approaches the limiting valueg(t)
boundary condition thaG(t,r;x)—0 whenr—~. Here =({vg(W,)) [given by Eq.(9) with b replaced byR] even if
H(2z) is the Heaviside step function ands the characteristic much of the cluster volume is free from traps. So, H4®)
particle lifetime in a cluster. Applying the Laplace transfor- and (13) provide the simplest possible solution for the aver-
mation, Eq.(11) is easily solved and the Laplace transformsage volume of WB.

of the death probability and the average volume of WB are |n calcula’[ing;g]) we assume that> . So, converting
successively found. The final result is Eq. (12) we retain only the first two terms of the long-time
expansion. In so doing, we obtain thattat 7 the average
volume of WB is presented by E@9) for the average vol-

G D d | ,dG
- = r
ar

1
ot —r—zﬁ —)—;H(R—T)G, (11)

o 3
o= [ e umat-
0

3s(1+s7) ume of WS, where the radiuk is replaced byR*=R(1
—tanha/a). To verify the analytical solution we com-
1 3(1+2z) Vz+a cothyz+a—1 pare it with the results of computer simulations. We have
Z(1+s7) \/m cothzratzl’ simulated stochastic trajectori¢$6] of a cluster, counted

directly the volume visited by spherical particles randomly
(12 distributed within the cluster, and averaged this volume over
trajectories and particle configuratiofis/]. As Fig. 1 shows,
where z= /st and the dimensionless parameter 7, /7  the simulated and the analytical results for the average vol-
measures the degree to which a cluster is absorbing.igf ume of WB are in close agreement. Marked deviations
small, a particle passes through a cluster nearly sdfaly  (~14%) occur only fore=1.8 (n=3), where bothn and
case of transparent clustgrif « is large, a particle entering R/b are not sufficiently large and our theory is too crude.
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Substituting the expression fof" into Eq.(8) we arrive
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for noncorrelated traps of radil® and the kineticg14) is

at the Smoluchowski kinetics corrected for the trap clustercontrolled by the cluster concentration and size. In accor-

ing [cf. Eq. (10)]
—In P(t)=ck(a)t(1+2R*/\/7Dt),

where the time-independent rate constant is given by

tanh\/—)

(14

(19

k k
(a)=Knc— ( \/E

Equations(14) and (15) are the main results of this work.
They show how the trap clusteringepresented by the ab-

sorption coefficientmodifies the course of the processalf
is small, a<1, thenk(a)=Kk,(1—0.4a). The main term

dance with the general theory, for amtrapping by clusters
of traps runs slower than that by both noncorrelated tfafs
Eq. (5)] and perfectly absorbing clustdrsf. Eq. (6)].

Finally, we emphasize that our treatment of the problem
provides an intermediate asymptotic behavior of the survival
probability. At small timest=< rp, the method of calculation
of the average WB volume is inapplicable. At very long
times, the mean field approximation breaks down. For the
considered case of nonoverlapping clusters, Ef4) and
(15) give a satisfactory description of the trapping kinetics at
times where the overwhelming majority of particles annihi-
late.

coincides with the rate constant for noncorrelated traps. For

transparent clusters, E¢L4) in fact is reduced to Eq10)
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