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Effect of trap clustering on Brownian particle trapping rate
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Brownian particle survival is studied in the case where traps are gathered in clusters. If the number of traps
n in a cluster is small, the trap clustering is only manifested at the final stage of the process. In the opposite
limit, the clusters are perfectly absorbing and trapping proceeds considerably slower than that by noncorrelated
traps from the very beginning. We treat the intermediate case, wheren is neither small nor large, and present
an approximate expression for the rate constant that connects the two limiting cases. The results are in
agreement with computer simulations.@S1063-651X~98!09810-9#

PACS number~s!: 05.40.1j, 82.20.Fd
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The idea of Brownian particles trapped by randomly d
tributed static perfect traps is widely used in theoretical m
els of different physical and chemical phenomena, exem
fied by fluorescence quenching, fast chemical reactio
migration of excitations, etc.@1,2#. An essential point under
lying the conventional theory~dating back to Smoluchowski!
is the assumption that traps are spatially noncorrelated@1#. In
real systems, however, trap correlations are often presen
ther by design or naturally. Several attempts to allow for t
correlations were made@3–8#. Particular emphasis has bee
placed on the trapping kinetics at the final process st
where closed analytical results are available@3,7#.

Our aim in this paper is to handle the correlation effects
times where the majority of particles annihilate. We focus
a specific type of trap correlations, viz., traps are gathere
clusters. Trap clustering can play an important role in dete
mining the rates of trapping by segments of polymer ch
@9# or ligand binding to cell-bound receptors@10#. A model
of trapping by spatially noncorrelated clusters of traps
been proposed by Berezhkovskiiet al. @6# and discussed in
subsequent articles@7,8#. The previous treatments have pr
vided a few general conclusions concerning the trap clus
ing influence on particle’s survival, however, the trappi
kinetics at normal~not asymptotically long! times was found
only for two limiting cases. If the number of trapsn in a
cluster is large enough, the clusters by themselves play
role of perfect traps. For such ‘‘absorbing’’ clusters, the
problem is reduced to that with noncorrelated traps wh
concentration and size are those of the clusters. In the o
site limit, whenn is small enough, a particle passes throu
a cluster nearly safely. For such ‘‘transparent’’ clusters, the
trap clustering is actually manifested at asymptotically lo
times only. Here we treat theintermediatecase, where the
clusters are neither transparent nor absorbing, and show
a smooth transition between the two limiting cases occ
The analytical results are verified by a Brownian dynam
simulation.

A special feature of the model@6# is that each trap is
assigned to a certain cluster, so that the trap ensemble ca
presented in the form$xk1yi

(k) , i 51,...,n%. The points$xk%
have the meaning of cluster ‘‘centers’’ and the aggregate
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vectors (y1
(k) ,...,yn

(k)) determines the positions ofn spherical
traps with respect to the center ofkth cluster. Trap clusters
are assumed spatially noncorrelated and statistically sim
This implies that the cluster centers are distributed accord
to the Poisson law and the distribution of traps within ea
cluster is the same. The trap concentrationc and the cluster
concentrationccl are related by the equationc5nccl .

As a beginning, consider a particle moving along
Wiener trajectoryWt in the presence of a single cluster
traps located at given points$x1yi , i 51,...,n%. To charac-
terize the particle’s survival, introduceP(tuWtuxu$yi%),
which equals 1 if the particle survives for a timet and 0 if it
is trapped. The condition of survival is formulated especia
simply if one looks on the process from the ‘‘particle’s poi
of view.’’ Then the particle is stationary at the pointx, while
the cluster center~initially at the origin! moves alongWt .
The i th trap of the cluster describes a tubevb(Wt2yi) of
radiusb, whose centerline is the trajectoryWt shifted at the
vector 2yi with respect toWt , where i 51,...,n. Note that
vb(Wt) is known in the literature@11,12# as theWiener sau-
sage ~WS!. Due to the cluster motion, the traps visit th
regionvb

(n)(Wt ;$yi%), which is the union ofn identical cop-
ies of WSvb(Wt). We will refer tovb

(n)(Wt ;$yi%), which is
a natural generalization of WS to the cluster case, as
bunch of Wiener sausages@7,8#, or simply theWiener bunch
~WB!. The particle survives during timet if vb

(n)(Wt ;$yi%)
does not contain the pointx. This implies that
P(tuWtuxu$yi%)512x„x;vb

(n)(Wt ;$yi%)…, where x~R;v! is
the indicator function, which equals 1 when pointR belongs
to v and 0 otherwise.

When there are many clusters and the positions of
traps are fixed, the survival of a particle moving alongWt is
characterized by

)
k

P~ tuWtuxku$yi
~k!% !5)

k
@12x„xk ;vb

~n!~Wt ;$yi
~k!% !…#.

~1!

What is really needed is the particle survival probabil
P(t), which is the average of the product in Eq.~1!, taken
4340 © 1998 The American Physical Society
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over trap configurations and particle~Wiener! trajectories.
Following the approach proposed in@13#, we start with the
first averaging, which is carried out in two separate stag
First, we make the partial average over trap configurati
inside each cluster for the fixed positions of clusters cent
which is denoted below by a bar. Then, the average over
Poisson ensemble of trap centers is made. This can be
veniently done by introducing an auxiliary volumeV with
N5cclV cluster centers and passing to the limitV→` in the
final result. In so doing, we obtain for the~conditional! sur-
vival probability

P~ tuWt!5 lim
V→`

1

VN E
V
¯E

V
)
k51

N

@12x~xk ;vb
~n!!#dxk

5 lim
V→`

F12
1

V E
V

x„x;vb
~n!~Wt ;$yi%!…dxGN

5expF2cclE x„x;vb
~n!~Wt ;$yi%!…dxG . ~2!

Let us define the volume of WB corresponding
a given trajectoryWt and a fixed intracluster configura
tion of traps $yi% as vb

(n)(Wt ;$yi%)[v@vb
(n)(Wt ;$yi%)#

5*x„x;vb
(n)(Wt ; $yi%)…dx, and denote the WB volume av

eraged over intracluster configurations byv̄b
(n)(Wt). Finally,

it remains to averageP(tuWt), Eq. ~2!, over Wiener trajec-
tories, which is denoted by angular brackets. Taking i
account the definition of the WB volume, we arrive at t
following expression for the survival probability@6#:

P~ t !5^exp@2cclv̄b
~n!~Wt!#&. ~3!

In the particular casen51, the volume of WB is simply
the volumevb(Wt) of single WS and the representation
the survival probability~3! is reduced to that obtained earlie
@13# for noncorrelated traps

Pnc~ t !5^exp@2cvb~Wt!#&. ~4!

The formal analogy between Eqs.~3! and~4! is noteworthy.
The presence of the cluster concentrationccl , in place of the
trap concentrationc, reflects the fact that here we deal wi
an ‘‘ideal gas’’ of clusters instead of an ideal gas of traps
the conventional model. The volume of WS is replaced
the volume of WB because the clusters have a certain in
structure.

The representation~3! of the survival probability enable
us to draw an important conclusion. Since fort.0 the vol-
ume of WB is smaller than the sum of the volumes ofn
individual WS forming WB, a comparison of Eqs.~3! and
~4! shows that fort.0

P~ t !.Pnc~ t !. ~5!

Thus, trapping by clusters of traps proceeds slower than
by noncorrelated traps no matter what the cluster structu
@6#. Note that the correlations featuring the model can
treated as a combination of grouping correlations respons
for the cluster formation and intracluster correlations de
mining the structure of cluster. The former can be interpre
s.
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as a display of some specific trap attraction and hence fa
tate the particle’s survival, according to the general conc
sion concerning the trap correlation influence on the trapp
rate @5#. The latter can be of arbitrary nature so that th
influence on the kinetics is ambiguous. The inequality~5!
points to the decisive role of the grouping correlations.

Another appropriate estimate ofP(t) is obtained from Eq.
~3! on the relevant assumption that the clusters are sphere
radius R. Then, from the evident inequalityv̄b

(n)(Wt)
<vR(Wt), wherevR(Wt)[v@vR(Wt)# is the volume of WS
generated by a spherical Brownian particle of radiusR, im-
mediately follows that

P~ t !>^exp@2cclvR~Wt!#&5 P̃nc~ t !. ~6!

P̃nc(t) is the survival probability of a particle among nonco
related traps of radiusR, whose concentration isccl @cf. Eq.
~4!#. So, trapping by clusters of traps runs slower than that
clusters playing the role of traps. At asymptotically lon
times, when the majority of surviving particles spend all t
time in large trap-free regions@14#, the inequality~6! passes
into equality and the long-time decay ofP(t) in d dimen-
sions ~regardless of the cluster structure! exhibits Donsker-
Varadhan behavior@12# controlled by the cluster concentra
tion @7#

2 ln P~ t !;~ccl
2/dDt !d/~d12!. ~7!

To find P(t) at normal times, a recourse to approxim
tions making Eq.~3! analytically treatable is required. At th
initial stage, the main contribution is given by the Wien
trajectories determining the average~over Wt! volume of
WB, v̄b

(n)(t)[^v̄b
(n)(Wt)&. This suggests use of the mea

field approximation neglecting the WB volume fluctuation
For noncorrelated traps, a similar approach@13# well de-
scribes trapping of the bulk of particles provided~as usual in
the trapping problem! that the volume fraction of traps i
small. One might expect that an employment of the me
field approximation to the problem under study offers t
greatest promise, when the volume fraction of clusters
small,cclR

d!1 ~nonoverlapping clusters!. With this approxi-
mation, the survival probability~3! is given by

P~ t !.exp@2cclv̄b
~n!~ t !#. ~8!

By settingn51, the model is reduced to that of noncorr
lated traps, the volumev̄b

(1)(t) is the average WS volume
vb(t), and Eq.~8! leads to the conventional trapping kine
ics. In particular in three dimensions@15#,

vb~ t !54pbDt~112b/ApDt ! ~9!

and the kinetics~8! takes its familiar Smoluchowski form

2 ln Pnc~ t !5kncct~112b/ApDt !, ~10!

where D is the particle diffusion coefficient andknc
54pbD is the rate constant describing trapping by nonc
related traps. Note that at asymptotically long times
mean-field approximation fails because of the crucial role
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the WB volume fluctuations at these times and the surv
probability ~7! decays considerably slower than the mea
field estimate~8! predicts.

By definition, the average volume of WB isv̄b
(n)(t)

5*Q̄(t;x)dx, where Q̄(t;x)5Q(t;x,$yi%) and Q(t;x,$yi%)
5^x„x;vb

(n)(Wt ;$yi%)…&. The latter is the fraction of the tra
jectories starting atx, which have visited at least one ofn
traps located at the points$yi% during time t at least once,
i.e., the death probability of a particle initially at pointx in
the presence of a single cluster centered at the origin. T
the mean-field approximation reduces the problem to tha
particle survival in the presence of only one cluster of tra
In the following, we treat the latter problem in three dime
sions, assuming thatR@b, n@1, and intracluster correla
tions are absent, i.e., traps, being independent of each o
are uniformly distributed within the cluster.

An approximate treatment presented here is based on
simple idea similar to that used in the theory of ligand bin
ing to receptors on cell surfaces@10#. In fact, we need the
integral of the probabilityQ̄(t;x) taken over different par-
ticle starting pointsx rather than the probability itself. A
times, t@tD ~tD5R2/D is the characteristic time o
Brownian-particle passage through a cluster!, the main con-
tribution comes fromx@R. A particle initially far from a
cluster does not ‘‘feel’’ fine details of the cluster structur
For such a particle, the cluster appears to be uniform
neither perfectly absorbing nor perfectly transparent. T
suggests replacement of the cluster of traps~sphere with
‘‘black holes’’! by a uniform partially absorbing~‘‘gray’’ !
sphere of radiusR, in which the particle can be absorbed
any point with a fixed rate. With this approximation, th
problem becomes spherically symmetric andQ̄(t;x)51
24p*0

`G(t,r ;x)r 2dr, where G(t,r ;x) is the probability
density that the particle initially at distancex will be at dis-
tance r after time t, which satisfies the diffusion equatio
with a sink term

]G

]t
5

D

r 2

]

]r S r 2
]G

]r D2
1

t
H~R2r !G, ~11!

the initial conditionG(0,r ;x)5(4px2)21d(r 2x), and the
boundary condition thatG(t,r ;x)→0 when r→`. Here
H(z) is the Heaviside step function andt is the characteristic
particle lifetime in a cluster. Applying the Laplace transfo
mation, Eq.~11! is easily solved and the Laplace transform
of the death probability and the average volume of WB
successively found. The final result is

v̄b
~n!~s!5E

0

`

e2stv̄b
~n!~ t !dt5

4pR3

3s~11st!

3F11
3~11z!

z2~11st!

Az1a cothAz1a21

Az1a cothAz1a1z
G ,

~12!

wherez5AstD and the dimensionless parametera5tD /t
measures the degree to which a cluster is absorbing. Ifa is
small, a particle passes through a cluster nearly safely~the
case of transparent clusters!. If a is large, a particle entering
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a cluster most likely is eliminated before leaving~the case of
absorbing clusters!. It is natural to calla the absorption co-
efficient.

An approximation fort is derived on the assumption tha
the mutual influence of intracluster traps on the particle de
can be neglected. This suggests use of the Smolucho
dependence~10!, wherec is replaced by the intracluster tra
concentrationcin53n/4pR3. Following this way, we have
t.tSm5(R/3nb)tD and

a53nb/R. ~13!

The approximation made is good if traps are far ap
enough, i.e., the volume fraction of traps in clusters,r in
;n(b/R)3, is small. Even ifr in is not small, this also seem
to be reasonable. The point is thata@r in and the volume
v̄b

(n) as a function ofa approaches the limiting valuevR(t)
5^vR(Wt)& @given by Eq.~9! with b replaced byR# even if
much of the cluster volume is free from traps. So, Eqs.~12!
and ~13! provide the simplest possible solution for the ave
age volume of WB.

In calculatingv̄b
(n) we assume thatt@tD . So, converting

Eq. ~12! we retain only the first two terms of the long-tim
expansion. In so doing, we obtain that att@t the average
volume of WB is presented by Eq.~9! for the average vol-
ume of WS, where the radiusb is replaced byR!5R(1
2tanhAa/Aa). To verify the analytical solution we com
pare it with the results of computer simulations. We ha
simulated stochastic trajectories@16# of a cluster, counted
directly the volume visited by spherical particles random
distributed within the cluster, and averaged this volume o
trajectories and particle configurations@17#. As Fig. 1 shows,
the simulated and the analytical results for the average
ume of WB are in close agreement. Marked deviatio
~;14%! occur only for a51.8 (n53), where bothn and
R/b are not sufficiently large and our theory is too crude

FIG. 1. Comparison of the analytical solution@Eq. ~9! with b
replaced byR!# for the average volume of WB~solid lines with the
numbers showing the values ofa! with simulation data@R/b55,
n53 ~squares!, 15 ~circles!, 60 ~stars!#. The dashed line is the time
dependence of the average volume visited by a Brownian particl
radiusR.
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Substituting the expression forv̄b
(n) into Eq. ~8! we arrive

at the Smoluchowski kinetics corrected for the trap clus
ing @cf. Eq. ~10!#

2 ln P~ t !.ck~a!t~112R!/ApDt !, ~14!

where the time-independent rate constant is given by

k~a!5knc

3

a S 12
tanhAa

Aa
D . ~15!

Equations~14! and ~15! are the main results of this work
They show how the trap clustering~represented by the ab
sorption coefficient! modifies the course of the process. Ifa
is small, a!1, then k(a).knc(120.4a). The main term
coincides with the rate constant for noncorrelated traps.
transparent clusters, Eq.~14! in fact is reduced to Eq.~10!
and trap-cluster formation manifests itself very slightly. T
rate constantk(a) monotonously decreases with a rise in t
absorption coefficient despite the absorption by a single c
ter increases witha. The slowdown due to trap clustering
predicted by inequality~5! is most pronounced whena is
large and the clusters become absorbing. In this case,k(a)
.( k̃nc/n)(12a21/2), wherek̃nc54pDR is the rate constan
,
es

.

,

k

-

r-

or

s-

for noncorrelated traps of radiusR, and the kinetics~14! is
controlled by the cluster concentration and size. In acc
dance with the general theory, for anya trapping by clusters
of traps runs slower than that by both noncorrelated traps@cf.
Eq. ~5!# and perfectly absorbing clusters@cf. Eq. ~6!#.

Finally, we emphasize that our treatment of the probl
provides an intermediate asymptotic behavior of the surv
probability. At small times,t<tD , the method of calculation
of the average WB volume is inapplicable. At very lon
times, the mean field approximation breaks down. For
considered case of nonoverlapping clusters, Eqs.~14! and
~15! give a satisfactory description of the trapping kinetics
times where the overwhelming majority of particles anni
late.
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